Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Jean-Marie Coustard, a* Ronan Le Toquin, b Roland Leo, b Werner Paulus and Alain Cousson c

^aFacuté des Sciences, Laboratoire de Chimie 12, UMR CNRS 6514, Avenue du Recteur Pineau, F-86022 Poitiers, France, ^bLaboratoire de Chimie du Solide et Inorganique Moléculaire, UMR 6511 CNRS-Université de Rennes 1, Campus de Beaulieu, Avenue du Général Leclerc, F-35042 Rennes, France, and ^cLaboratoire Léon Brillouin, CEA CNRS, CEN Saclay, F-91191 Gif-sur-Yvette CEDEX, France

Correspondence e-mail: jean-marie.coustard@gmx.net

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.036 wR factor = 0.043Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*E*)-3-Methoxy-3-methylsulfanylisothiochroman-4-one oxime

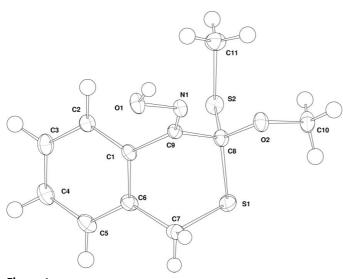
The title compound, $C_{11}H_{13}NO_2S_2$, (II), is formed from methanol trapping of the cyclic cation derived from 1-methylthio-1-benzylthio-2-nitroethylene (I), in triflic acid. Compound (II) is characterized by its *E*-configured oxime and the boat conformation of its non-aromatic ring.

Received 11 December 2000 Accepted 8 February 2001 Online 19 February 2001

Comment

In trifluoromethanesulfonic acid, 1,1-bis(methylthio)-2-nitroethene undergoes polyprotonation that leads to loss of water and formation of the hydroxynitrilium ion (O-protonated nitrile oxide). This cation is an electrophile that is able to react with a tethered aromatic ring, either intermolecularily or intramolecularily (Coustard, 1995). In this way, when a solution of 1-methylthio-1-benzylthio-2-nitroethylene, (I), in trifluoromethanesulfonic acid was quenched with methanol, the title compound, (II), was obtained in a good yield (Coustard, 2001). A view of this molecule is presented in Fig. 1.

The non-aromatic ring adopts a slighly distorted boat conformation with torsion angles C9-C8-S1-C7 and C9-C1-C6-C7 of -3.4 (2) and 2.7 (4)°, respectively. The C8 atom of the ortholactone function is bonded to an axial MeS group [C11-S2-C8-S1-173.65 (8)° and N1-C9-C8-S2-114.67 (13)°] and to an equatorial MeO group [O2-C8-C9-C1-171.08 (12)°].


The C9, N1, and O1 atoms of the oxime function and the aromatic ring are not coplanar, as seen in the torsion angle C2-C1-C9-N1 of 57.3 (4)°. The oxime function is E configured $[C1-C9-N1-O1\ 0.1\ (3)^\circ]$ with an unusually short C9-N1 bond of $1.2559\ (9)$ Å as compared with the mean value of $1.280\ (13)$ Å for $Csp^3=N-OH$ (Allen *et al.*, 1987). The observed oxime configuration (Hegarty, 1980) is in agreement with the postulated mechanism of formation which implied electrophilic addition of the transient hydroxynitrilium ion on the phenyl ring.

Experimental

The title compound was prepared by cyclization of 1-ethylthio-1-benzylthio-2-nitroethylene, (I), in trifluoromethanesulfonic acid and quenching with methanol (Coustard, 2001). Crystallization from ethyl acetate afforded colourless crystals suitable for X-ray analysis.

DOI: 101107/S1600536801002707

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

$C_{11}H_{13}NO_2S_2$	Mo $K\alpha$ radiation
$M_r = 255.35$	Cell parameters from 16060
Orthorhombic, Pbca	reflections
a = 9.3725 (2) Å	$\theta = 1-28^{\circ}$
b = 10.7012 (2) Å	$\mu = 0.44 \text{ mm}^{-1}$
c = 23.0919 (4) Å $V = 2316.0 \text{ Å}^3$	T = 120 K
$V = 2316.0 \text{ Å}^3$	Plate, colourless
Z = 8	$0.30 \times 0.20 \times 0.20 \text{ mm}$
$D_x = 1.46 \text{ Mg m}^{-3}$	

Data collection

Nonius KappaCCD diffractometer	$\theta_{\rm max} = 28.0^{\circ}$
φ rotation scans with 2° step	$h = 0 \rightarrow 12$
16 060 measured reflections	$k = 0 \rightarrow 14$
2823 independent reflections	$l = 0 \rightarrow 30$
2317 reflections with $I > 3\sigma(I)$	Intensity decay: none
$R_{\rm int} = 0.044$	

Refinement

Refinement on F We R = 0.036 We R = 0.043 S S = 1.055 (Δ 2317 reflections $\Delta \mu$ 146 parameters $\Delta \mu$ Only H-atom U's refined

Weighting: Chebychev polynomial with 3 parameters (Carruthers & Watkin, 1979): 0.668, 0.599, 0.382 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.86~{\rm e~\mathring{A}^{-3}}$ $\Delta\rho_{\rm min} = -0.48~{\rm e~\mathring{A}^{-3}}$

H atoms bonded to C atoms were placed geometrically and their positional parameters were not refined. O-bonded H atoms were located from a difference map but their positional parameters were not refined. Displacement parameters were refined for all H atoms.

Data collection: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Nonius, 1998); cell refinement: *DENZO*; data reduction: *DENZO*; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985); program(s) used to refine structure: *CRYSTALS* (Watkin, Prout, Carruthers & Betteridge, 1996); molecular graphics: *CAMERON* (Watkin, Prout & Pearce, 1996); software used to prepare material for publication: *CRYSTALS*.

Thanks are extended to CNRS for financial support

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst, A35, 698–699.
Coustard, J.-M. (1995). Tetrahedron, 51, 10929–10940.
Coustard, J.-M. (2001). Eur. J. Org. Chem. In the press.
Hegarty, A. F. (1980). Acc. Chem. Res. 13, 448–454.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
Watkin, D. J., Prout, C. K., Carruthers, R. J. & Betteridge, P. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical

Crystallography Laboratory, University of Oxford, England.